Embedded

An embedded system is a computer system with a dedicated function within a larger mechanical or electrical system, often with real-time computing constraints. It is embedded as part of a complete device often including hardware and mechanical parts. Embedded systems control many devices in common use today. Ninety-eight percent of all microprocessors are manufactured as components of embedded systems.

Modern embedded systems are often based on microcontrollers (i.e. CPU's with integrated memory or peripheral interfaces), but ordinary microprocessors (using external chips for memory and peripheral interface circuits) are also common, especially in more-complex systems.

embedded system is dedicated to specific tasks, design engineers can optimize it to reduce the size and cost of the product and increase the reliability and performance. Some embedded systems are mass-produced, benefiting from economies of scale.

A typical industrial microcontroller is quite unsophisticated compared to a typical enterprise desktop computer and generally depends on a simpler, less-memory-intensive program environment. The simplest devices run on bare metal and are programmed directly using the chip CPU's machine code language.

Embedded systems are providing new levels of efficiency, performance, and safety to off-highway vehicles. Advances in fuel-efficiency through improved combustion techniques and hybrid powertrains are impacting the cost to operate while automatic GPS navigation and software-enabled implements are allowing equipment to accomplish more during operation.

Embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, and largely complex systems like hybrid vehicles, MRI, and avionics. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

Embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, and largely complex systems like hybrid vehicles, MRI, and avionics. Complexity varies from low, with a single microcontroller chip, to very high with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

Embedded systems are used in transportation, fire safety, safety and security, medical applications and life critical systems, as these systems can be isolated from hacking and thus, be more reliable.[citation needed] For fire safety, the systems can be designed to have greater ability to handle higher temperatures and continue to operate. In dealing with security, the embedded systems can be self-sufficient and be able to deal with cut electrical and communication systems.

embedded systems can be relatively simple, a growing number either supplant human decision-making or offer capabilities beyond that which a human could provide. For instance, some aviation systems, including those used in drones, are able to integrate sensor data and act upon that information faster than a human could, permitting new kinds of operating features.